http://www.cnr.it/ontology/cnr/individuo/prodotto/ID9514
beta1 subunit modulates the Nav1.4 sodium channel by changing the surface charge. (Articolo in rivista)
- Type
- Label
- beta1 subunit modulates the Nav1.4 sodium channel by changing the surface charge. (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Ferrera L., Moran O. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto di Biofisica, CNR, Genova (literal)
- Titolo
- beta1 subunit modulates the Nav1.4 sodium channel by changing the surface charge. (literal)
- Abstract
- Voltage-gated sodium channels, comprised of a pore-forming alpha-subunit and additional regulatory (beta) subunits, play a critical role in regulation of neuronal excitability. Mechanisms of regulation of beta-subunits remain elusive. We have tested the functional effects of beta1 sodium channel subunit on surface charges as a mechanism for channel modulation. HEK-293 cell lines permanently transfected with the sole rat skeletal muscle sodium channel alpha-subunit (Nav1.4), or co-expressing the sodium channel alpha-subunit and beta1-subunit were studied with the whole-cell mode of the patch-clamp technique. At physiological extracellular Ca(2+) concentration (2 mM), expression of beta1-subunit did not produce any significant effect on the voltage-dependent properties of sodium currents. However, a shift of half-activation potentials of sodium channel by changing the extracellular Ca(2+) was potentiated when beta1 was co-expressed with alpha-subunit. In contrast, the expression of beta1-subunit did not affect the Ca(2+) binding to the open or to the closed sodium channel pore, difference of the effect provoked by extracellular Ca(2+) could therefore be attributed to an increased in negative surface charge determined by the presence of beta1-subunit. These data are in agreement with the hypothesis of a modulation of the sodium current by the expression of the highly sialylated beta1-subunit, which would alter the channel gating by increasing the density of surface negative charges in the vicinity of the sodium channel voltage sensing machinery. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi