An online recommender system for large Web sites (Contributo in atti di convegno)

Type
Label
  • An online recommender system for large Web sites (Contributo in atti di convegno) (literal)
Anno
  • 2004-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/WI.2004.10158 (literal)
Alternative label
  • Baraglia R.; Silvestri F. (2004)
    An online recommender system for large Web sites
    in IEEE/WIC/ACM International Conference on WEB Intelligence - WI'2004, Beijing, 20-24 Sept. 2004
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Baraglia R.; Silvestri F. (literal)
Pagina inizio
  • 199 (literal)
Pagina fine
  • 205 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1410804 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • IEEE CONFERENCE PUBLICATIONS (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • September 20-24, 2004. Proceedings, pp. 199-205. Ning Zhong, Henry Tirri, Yiyu Yao, Lizhu Zhou, Jiming Liu, and Nick Cerrone (eds.). IEEE, 2004. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 6 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Istituto di scienza e tecnologia dell'informazione \"Alessandro Faedo\" (literal)
Titolo
  • An online recommender system for large Web sites (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 0-7695-2100-2 (literal)
Abstract
  • In this paper we propose a WUM recommender system, called SUGGEST 3.0, that dynamically generates links to pages that have not yet been visited by a user and might be of his potential interest. Differently from the recommender systems proposed so far, SUGGEST 3.0 does not make use of any off-line component, and is able to manage Web sites made up of pages dynamically generated. To this purpose SUGGEST 3.0 incrementally builds and maintains historical information by means of an incremental graph partitioning algorithm, requiring no off-line component. The main innovation proposed here is a novel strategy that can be used to manage large Web sites. Experiments, conducted in order to evaluate SUGGEST 3.0 performance, demonstrated that our system is able to anticipate users' requests that will be made farther in the future, introducing a limited overhead on the Web server activity. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Insieme di parole chiave di
data.CNR.it