Multi-Scale Feature Spaces for Shape Processing and Analysis (Contributo in atti di convegno)

Type
Label
  • Multi-Scale Feature Spaces for Shape Processing and Analysis (Contributo in atti di convegno) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/SMI.2010.27 (literal)
Alternative label
  • Patane' G; Falcidieno B. (2010)
    Multi-Scale Feature Spaces for Shape Processing and Analysis
    in IEEE International Conference on Shape Modeling 2010, SMIĀ’10, Aix-en-Provence, France, 21-23 June 2010
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Patane' G; Falcidieno B. (literal)
Pagina inizio
  • 113 (literal)
Pagina fine
  • 123 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5521454 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
  • Shape Modeling International Conference (SMI), 2010 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • pp. 113-123 June 21-23, 2010 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Patane' G Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Genova, Italy Falcidieno B Consiglio Nazionale delle Ricerche, Istituto di Matematica Applicata e Tecnologie Informatiche, Genova, Italy (literal)
Titolo
  • Multi-Scale Feature Spaces for Shape Processing and Analysis (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-1-4244-7260-4 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Jean-Philippe Pernot; Jarek Rossignac; Michela Spagnuolo, Bianca Falcidieno; Philippe Veron (literal)
Abstract
  • In digital geometry processing and shape modeling, the Laplace-Beltrami and the heat diffusion operator, together with the corresponding Laplacian eigenmaps, harmonic and geometry-aware functions, have been used in several applications, which range from surface parameterization, deformation, and compression to segmentation, clustering, and comparison. Using the linear FEM approximation of the Laplace-Beltrami operator, we derive a discrete heat kernel that is linear, stable to an irregular sampling density of the input surface, and scale covariant. With respect to previous work, this last property makes the kernel particularly suitable for shape analysis and comparison; in fact, local and global changes of the surface correspond to a re-scaling of the time parameter without affecting its spectral component. Finally, we study the scale spaces that are induced by the proposed heat kernel and exploited to provide a multi-scale approximation of scalar functions defined on 3D shapes. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Editore di
Insieme di parole chiave di
data.CNR.it