http://www.cnr.it/ontology/cnr/individuo/prodotto/ID8398
An iterative algorithm with joint sparsity constraints for magnetic tomography (Articolo in rivista)
- Type
- Label
- An iterative algorithm with joint sparsity constraints for magnetic tomography (Articolo in rivista) (literal)
- Anno
- 2010-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Bretti G., Pitolli F. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Università La Sapienza di Roma
Università Campus Bio-medico di Roma (literal)
- Titolo
- An iterative algorithm with joint sparsity constraints for magnetic tomography (literal)
- Abstract
- Magnetic tomography is an ill-posed and ill-conditioned inverse
problem since, in general, the solution is non-unique and the measured
magnetic field is affected by high noise. We use a joint sparsity constraint to regularize the magnetic inverse problem. This leads to a minimization problem whose solution can be approximated by an iterative thresholded Landweber algorithm. The algorithm is proved to be convergent and an error estimate is also given.
Numerical tests on a bidimensional problem show that our algorithm outperforms Tikhonov regularization when the measurements are distorted by high noise. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di