The numerical spectrum of a one-dimensional Schrödinger operator with two competing periodic potentials (Articolo in rivista)

Type
Label
  • The numerical spectrum of a one-dimensional Schrödinger operator with two competing periodic potentials (Articolo in rivista) (literal)
Anno
  • 2007-01-01T00:00:00+01:00 (literal)
Alternative label
  • Gosse L. (2007)
    The numerical spectrum of a one-dimensional Schrödinger operator with two competing periodic potentials
    in Communications in mathematical sciences
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Gosse L. (literal)
Pagina inizio
  • 485 (literal)
Pagina fine
  • 493 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 5 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Titolo
  • The numerical spectrum of a one-dimensional Schrödinger operator with two competing periodic potentials (literal)
Abstract
  • We are concerned with the numerical study of a simple one-dimensional Schr\"odinger operator $-\frac 1 2 \Dxx + \alpha q(x)$ with $\alpha \in \Re$, $q(x)=\cos(x)+\eps \cos(kx)$, $\eps >0$ and $k$ being irrational. This governs the quantum wave function of an independent electron within a crystalline lattice perturbed by some impurities whose dissemination induces long-range order only, which is rendered by means of the quasi-periodic potential $q$. We study numerically what happens for various values of $k$ and $\eps$; it turns out that for $k > 1$ and $\eps\ll 1$, that is to say, in case more than one impurity shows up inside an elementary cell of the original lattice, ``impurity bands\" appear and seem to be $k$-periodic. When $\eps$ grows bigger than one, the opposite case occurs. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it