Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging (Articolo in rivista)

Type
Label
  • Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Alternative label
  • Laudadio T., Martínez-Bisbal M.C., Celda B., Van Huffel S. (2008)
    Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging
    in NMR in biomedicine
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Laudadio T., Martínez-Bisbal M.C., Celda B., Van Huffel S. (literal)
Pagina inizio
  • 311 (literal)
Pagina fine
  • 321 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 21 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • Digital Object Identifier (DOI) 10.1002/nbm.1190 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Department of Electrical Engineering, Division ESAT-SCD, Katholieke Universiteit Leuven, Leuven-Heverlee, Belgium Istituto per le Applicazioni del Calcolo M. Picone, National Research Council, (IAC-CNR), Bari, Italy Departamento de Química-Física, Facultad de Química, Universidad de Valencia, Valencia, Spain CIBER of Bioengineering, Biomaterials and Nanomedicine, ISC-III, Valencia, Spain (literal)
Titolo
  • Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging (literal)
Abstract
  • A new fast and accurate tissue typing technique has recently been successfully applied to prostate MR spectroscopic imaging (MRSI) data. This technique is based on canonical correlation analysis (CCA), a statistical method able to simultaneously exploit the spectral and spatial information characterizing the MRSI data. Here, the performance of CCA is further investigated by using brain data obtained by two-dimensional turbo spectroscopic imaging (2DTSI) from patients affected by glioblastoma. The purpose of this study is to investigate the applicability of CCA when typing tissues of heterogeneous tumors. The performance of CCA is also compared with that of ordinary correlation analysis on simulated as well as in vivo data. The results show that CCA outperforms ordinary correlation analysis in terms of robustness and accuracy. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it