http://www.cnr.it/ontology/cnr/individuo/prodotto/ID8001
Implicit-explicit numerical schemes for jump-diffusion processes (Articolo in rivista)
- Type
- Label
- Implicit-explicit numerical schemes for jump-diffusion processes (Articolo in rivista) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s10092-007-0128-x (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Briani M., Natalini R., Russo G. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Luiss; IAC-CNR; Univ. Catania (literal)
- Titolo
- Implicit-explicit numerical schemes for jump-diffusion processes (literal)
- Abstract
- We study the numerical approximation of solutions for parabolic
integro-differential equations (PIDE). Similar models arise in option pricing,
to generalize the Black-Scholes equation, when the processes which
generate the underlying stock returns may contain both a continuous part
and jumps. Due to the non-local nature of the integral term, unconditionally
stable implicit difference schemes are not practically feasible. Here we
propose using implicit-explicit (IMEX) Runge-Kutta methods for the time
integration to solve the integral term explicitly, giving higher-order accuracy
schemes under weak stability time-step restrictions. Numerical tests
are presented to show the computational efficiency of the approximation. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi