An approximation property of Pisot numbers (Articolo in rivista)

Type
Label
  • An approximation property of Pisot numbers (Articolo in rivista) (literal)
Anno
  • 2000-01-01T00:00:00+01:00 (literal)
Alternative label
  • Komornik, Vilmos; Loreti, Paola; Pedicini, Marco (2000)
    An approximation property of Pisot numbers
    in Journal of number theory (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Komornik, Vilmos; Loreti, Paola; Pedicini, Marco (literal)
Pagina inizio
  • 218 (literal)
Pagina fine
  • 237 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 80 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Titolo
  • An approximation property of Pisot numbers (literal)
Abstract
  • Let $q>1$. Initiated by P. Erd\H os et al. in \cite{ErdJooKom1}, several authors studied the numbers $l^m(q)=\inf \{y\ :\ y\in\Lambda_m,\ y\ne 0\}$, $m=1,2,\dots$, where $\Lambda_m$ denotes the set of all finite sums of the form $y=\eps_0 + \eps_1 q + \eps_2 q^2 + \dots + \eps_n q^n$ with integer coefficients $-m\le \eps_i \le m$. It is known (\cite{Bug}, \cite{ErdJooKom1}, \cite{ErdKom}) that $q$ is a Pisot number if and only if $l^m(q)>0$ for all $m$. The value of $l^1(q)$ was determined for many particular Pisot numbers, but the general case remains widely open. In this paper we determine the value of $l^m(q)$ in other cases. (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it