http://www.cnr.it/ontology/cnr/individuo/prodotto/ID7955
Gamma-convergence of discrete functionals with nonconvex perturbation for image classification (Articolo in rivista)
- Type
- Label
- Gamma-convergence of discrete functionals with nonconvex perturbation for image classification (Articolo in rivista) (literal)
- Anno
- 2004-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1137/S0036142902412336 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Aubert G., Blanc-Fèraud L., March R. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- athematical Reviews on the web (MathSciNet (literal)
- Scopus (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Aubert G., Universitè de Nice Sophia Antipolis France;
Blanc-Fèraud L., INRIA Sophia Antipolis France;
March R., IAC-CNR (literal)
- Titolo
- Gamma-convergence of discrete functionals with nonconvex perturbation for image classification (literal)
- Abstract
- The purpose of this paper is to show the theoretical soundness of a variational method proposed in image processing for supervised classification. Based on works developed for phase transitions in fluid mechanics, the classification is obtained by minimizing a sequence of functionals. The method provides an image composed of homogeneous regions with regular boundaries, a region being defined as a set of pixels belonging to the same class. In this paper, we show the Gamma-convergence of the sequence of functionals which differ from the ones proposed in fluid mechanics in the sense that the perturbation term is not quadratic but has a finite asymptote at infinity, corresponding to an edge-preserving regularization term in image processing. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi