On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures (Articolo in rivista)

Type
Label
  • On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures (Articolo in rivista) (literal)
Anno
  • 2004-01-01T00:00:00+01:00 (literal)
Alternative label
  • Filbir F.; Themistoclakis W. (2004)
    On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures
    in Journal of computational analysis and applications
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Filbir F.; Themistoclakis W. (literal)
Pagina inizio
  • 297 (literal)
Pagina fine
  • 312 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.cnr.it/istituti/ArticoliJCR.html?cds=004&id=35426 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 6 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • Mathematical Reviews on the web (MathSciNet) (literal)
  • Google S (literal)
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Institute for Biomathematics and Biometry, GSF National Research Center, 85764 Neuherberg, Germany. CNR, Istituto per le Applicazioni del Calcolo \"Mauro Picone\", sede di Napoli, Italy. (literal)
Titolo
  • On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures (literal)
Abstract
  • In this paper we construct a de la Vallée Poussin approximation process for orthogonal polynomial expansions. Our construction is based on convolution structures which are established by the orthogonal polynomial system. We show that our approach leads to a natural generalization of the de la Vallee Poussin approximation process known from the trigonometric case. Finally we consider Jacobi polynomials and the generalized Chebyshev polynomials expansions as examples. (literal)
  • The paper concerns the construction of a de la Vallée Poussin approximation process for orthogonal polynomial expansions, based on the convolution structures which are established by the orthogonal polynomial system. Starting from the well-known trigonometric case, we approach to a natural generalization, which leads to a nonclassical de la Vallée Poussin mean of the algebraic Fourier partial sums. Several concrete examples, such as Jacobi polynomials and the generalized Chebyshev polynomials expansions, are considered in detail. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it