http://www.cnr.it/ontology/cnr/individuo/prodotto/ID7954
On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures (Articolo in rivista)
- Type
- Label
- On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures (Articolo in rivista) (literal)
- Anno
- 2004-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Filbir F.; Themistoclakis W. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.cnr.it/istituti/ArticoliJCR.html?cds=004&id=35426 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- Mathematical Reviews on the web (MathSciNet) (literal)
- Google S (literal)
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Institute for Biomathematics and Biometry, GSF National Research Center, 85764 Neuherberg, Germany.
CNR, Istituto per le Applicazioni del Calcolo \"Mauro Picone\", sede di Napoli, Italy. (literal)
- Titolo
- On the construction of de la Vallée Poussin means for orthogonal polynomials using convolution structures (literal)
- Abstract
- In this paper we construct a de la Vallée Poussin approximation process for orthogonal polynomial expansions. Our construction is based on convolution structures which are established by the orthogonal polynomial system. We show that our approach leads to a natural generalization of the de la Vallee Poussin approximation process known from the trigonometric case. Finally we consider Jacobi polynomials and the generalized Chebyshev polynomials expansions as examples. (literal)
- The paper concerns the construction of a de la Vallée Poussin approximation process for orthogonal polynomial expansions, based on the convolution structures which are established by the orthogonal polynomial system. Starting from the well-known trigonometric case, we approach to a natural generalization, which leads to a nonclassical de la Vallée Poussin mean of the algebraic Fourier partial sums. Several concrete examples, such as Jacobi polynomials and the generalized Chebyshev polynomials expansions, are considered in detail. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di