Orthogonal polynomial wavelets (Articolo in rivista)

Type
Label
  • Orthogonal polynomial wavelets (Articolo in rivista) (literal)
Anno
  • 2002-01-01T00:00:00+01:00 (literal)
Alternative label
  • Fischer B., Themistoclakis W. (2002)
    Orthogonal polynomial wavelets
    in Numerical algorithms
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Fischer B., Themistoclakis W. (literal)
Pagina inizio
  • 37 (literal)
Pagina fine
  • 58 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 30 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Bernd Fischer, Università Medica di Luebeck, Germania (literal)
Titolo
  • Orthogonal polynomial wavelets (literal)
Abstract
  • Recently algebraic polynomials have been considered as wavelets and handled by wavelet techniques. In the unified approach for the construction of polynomial wavelets by Fischer and Prestin, the actual implementation of decomposition, reconstruction and/or compression schemes required at each level the inversion of generalized Grammian matrices, in general not orthogonal. In this context the present paper works out necessary and sufficient conditions for the polynomial wavelets to be orthogonal to each other. Furthermore it shows how these computable characterizations lead to attractive decomposition and reconstruction algorithms based on orthogonal matrices. Finally the special case of Bernstein--Szego weight functions is studied in detail. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it