http://www.cnr.it/ontology/cnr/individuo/prodotto/ID68347
Automatic expansion of domain-specific lexicons by term categorization (Articolo in rivista)
- Type
- Label
- Automatic expansion of domain-specific lexicons by term categorization (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1145/1138379.1138380 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Avancini H.; Lavelli A.; Sebastiani F.; Zanoli R. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://dl.acm.org/citation.cfm?doid=1138379.1138380 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
- In: ACM Transactions on Speech and Language Processing, vol. 3 (1) pp. 1-30. ACM, 2006. (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- Google Scholar (literal)
- Scopu (literal)
- PuMa (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- - Avancini e Sebastiani: Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche
- Lavelli e Zanoli: Istituto per la Ricerca Scientifica e Tecnologica, Istituto Trentino di Cultura (ora Fondazione Bruno Kessler) (literal)
- Titolo
- Automatic expansion of domain-specific lexicons by term categorization (literal)
- Abstract
- We discuss an approach to the automatic expansion of domain-specific lexicons, i.e., to the problem of extending, for each ci in a predefined set C = {c1, . . . , cm} of semantic domains, an initial lexicon Li 0 into a larger lexicon Li 1. Our approach relies on term categorization, defined as the task of labeling previously unlabeled terms according to a predefined set of domains. We approach this as a supervised learning problem, in which term classifiers are built using the initial lexicons as training data. Dually to classic text categorization tasks, in which documents are represented as vectors in a space of terms, we represent terms as vectors in a space of documents. We present the results of a number of experiments in which we use a boosting-based learning device for training our term classifiers. We test the effectiveness of our method by using WordNetDomains, a well-known large set of domain-specific lexicons, as a benchmark. Our experiments are performed using the documents in the Reuters Corpus Volume 1 as 'implicit' representations for our terms. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di