http://www.cnr.it/ontology/cnr/individuo/prodotto/ID64079
Cluster Generation and Cluster Labelling for Web Snippets:A Fast and Accurate Hierarchical Solution (Articolo in rivista)
- Type
- Label
- Cluster Generation and Cluster Labelling for Web Snippets:A Fast and Accurate Hierarchical Solution (Articolo in rivista) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/11880561_3 (literal)
- Alternative label
[1] Geraci F., [1] Pellegrini M., [2] Seabastiani F., [3] Maggini M. (2007)
Cluster Generation and Cluster Labelling for Web Snippets:A Fast and Accurate Hierarchical Solution
in Internet mathematics (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- [1] Geraci F., [1] Pellegrini M., [2] Seabastiani F., [3] Maggini M. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- [1] IIT-CNR, Pisa, Italy; [2] ISTI-CNR, Pisa, Italy; [3] Dipartimento di ingegneria dell'informazione, Università di Siena, Italy (literal)
- Titolo
- Cluster Generation and Cluster Labelling for Web Snippets:A Fast and Accurate Hierarchical Solution (literal)
- Abstract
- This paper describes Armil, a meta-search engine that groups into disjoint labelled clusters the Web snippets returned by auxiliary search engines. The cluster labels generated by Armil provide the user with a compact guide to assessing the relevance of each cluster to her information need. Strik- ing the right balance between running time and cluster well- formedness was a key point in the design of our system. Both the clustering and the labelling tasks are performed on the °y by processing only the snippets provided by the auxil- iary search engines, and use no external sources of knowl- edge. Clustering is performed by means of a fast version of the furthest-point-¯rst algorithm for metric k-center cluster- ing. Cluster labelling is achieved by combining intra-cluster and inter-cluster term extraction based on a variant of the information gain measure. We have tested the clustering ef- fectiveness of Armil against Vivisimo, the de facto industrial standard in Web snippet clustering, using as benchmark a comprehensive set of snippets obtained from the Open Di- rectory Project hierarchy. According to two widely accepted \external' metrics of clustering quality, Armil achieves bet- ter performance levels by 10%. We also report the results of a thorough user evaluation of both the clustering and the cluster labelling algorithms. On a standard 1GHz ma- chine, Armil performs clustering and labelling altogether in less than one second. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di