http://www.cnr.it/ontology/cnr/individuo/prodotto/ID60207
Supporting Function Calls within PELCR (Articolo in rivista)
- Type
- Label
- Supporting Function Calls within PELCR (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Cosentino A., Pedicini M., Quaglia F. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Dipartimento di Informatica, Sistemi e Produzione, Università degli Studi di Roma Tor Vergata, Viale del Politecnico 1, Rome, Italy
Istituto per le Applicazioni del Calcolo M. Picone, CNR, Viale del Policlinico 137, Rome, Italy
Dipartimento di Informatica e Sistemistica, Università degli Studi di Roma La Sapienza, Via Salaria 113, Rome, Italy (literal)
- Titolo
- Supporting Function Calls within PELCR (literal)
- Abstract
- In [M. Pedicini and F. Quaglia. A parallel implementation for optimal lambda-calculus reduction PPDP '00: Proceedings of the 2nd ACM SIGPLAN international conference on Principles and practice of declarative programming, pages 314, ACM, 2000, M. Pedicini and F. Quaglia. PELCR: Parallel environment for optimal lambda-calculus reduction. CoRR, cs.LO/0407055, accepted for publication on TOCL, ACM, 2005], PELCR has been introduced as an implementation derived from the Geometry of Interaction in order to perform virtual reduction on parallel/distributed computing systems.
In this paper we provide an extension of PELCR with computational effects based on directed virtual reduction [V. Danos, M. Pedicini, and L. Regnier. Directed virtual reductions. In M. Bezem D. van Dalen, editor, LNCS 1258, pages 7688. EACSL, Springer Verlag, 1997], namely a restriction of virtual reduction [V. Danos and L. Regnier. Local and asynchronous beta-reduction (an analysis of Girard's EX-formula). LICS, pages 296306. IEEE Computer Society Press, 1993], which is a particular way to compute the Geometry of Interaction [J.-Y. Girard. Geometry of interaction 1: Interpretation of system F. In R. Ferro, et al. editors Logic Colloquium '88, pages 221260. North-Holland, 1989] in analogy with Lamping's optimal reduction [J. Lamping. An algorithm for optimal lambda calculus reduction. In Proc. of 17th Annual ACM Symposium on Principles of Programming Languages. ACM, San Francisco, California, pages 1630, 1990]. Moreover, the proposed solution preserves scalability of the parallelism arising from local and asynchronous reduction as studied in [M. Pedicini and F. Quaglia. PELCR: Parallel environment for optimal lambda-calculus reduction. CoRR, cs.LO/0407055, accepted for publication on TOCL, ACM, 2005]. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto