http://www.cnr.it/ontology/cnr/individuo/prodotto/ID56197
Frequency split and vibration localization in imperfect rings (Articolo in rivista)
- Type
- Label
- Frequency split and vibration localization in imperfect rings (Articolo in rivista) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.jsv.2007.06.027 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- P. Bisegna; G. Caruso (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1) Dipartimento di Ingnegneria Civile, Università di Roma \"Tor Vergata\"
2) Istituto per le Tecnologie della Costruzione - Consiglio Nazionale delle Ricerche (literal)
- Titolo
- Frequency split and vibration localization in imperfect rings (literal)
- Abstract
- The dynamics of linearly elastic, imperfect rings vibrating in their own plane is considered in this paper. Imperfections
are modeled as perturbations of the uniform linear mass density and bending stiffness of a perfect ring. A perturbation
expansion and a spectral representation are employed, and a variational formulation of the vibration problem is
obtained.
A linear theory is deduced by retaining only the leading-order terms in the variational formulation. The linear theory
yields simple, closed-form expressions for the eigenfrequencies and the modal shapes, which are accurate when the
imperfections are sufficiently small. An enhanced, nonlinear theory is also derived, which is accurate even when the ring
imperfections are not small: in this case, an iterative solution procedure is developed.
The proposed theories are validated by considering some case-study problems and using the Ritz-Rayleigh solution as a
benchmark.
Finally, the linear theory is applied to the frequency trimming problem of an imperfect ring. A simple, closed-form
expression for the trimming masses is presented, valid for trimming any selected number of eigenmodes. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi