http://www.cnr.it/ontology/cnr/individuo/prodotto/ID52603
Filter-based feature selection for rail defect detection (Articolo in rivista)
- Type
- Label
- Filter-based feature selection for rail defect detection (Articolo in rivista) (literal)
- Anno
- 2004-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s00138-004-0148-3 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- C. Mandriota; M. Nitti; N. Ancona; E. Stella; A. Distante (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Istituto di Studi sui Sistemi Intelligenti per l'Automazione, ISSIA-CNR via amendola 122/D-I Bari Italy (literal)
- Titolo
- Filter-based feature selection for rail defect detection (literal)
- Abstract
- Over the last few years research has been oriented toward developing a machine vision system for locating and identifying, automatically, defects on rails. Rail defects exhibit different properties and are divided into various categories related
to the type and position of flaws on the rail. Several kinds of interrelated factors cause rail defects such as type of rail,construction conditions, and speed and/or frequency of trains using the rail. The aim of this paper is to present an experimental
comparison among three filtering approaches, based on texture analysis of rail surfaces, to detect the presence/absence of a particular class of surface defects: corrugation. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di