http://www.cnr.it/ontology/cnr/individuo/prodotto/ID52601
Leave-one-out prediction error of systolic arterial pressure time series under paced breathing (Articolo in rivista)
- Type
- Label
- Leave-one-out prediction error of systolic arterial pressure time series under paced breathing (Articolo in rivista) (literal)
- Anno
- 2005-01-01T00:00:00+01:00 (literal)
- Alternative label
N. Ancona, R. Maestri, D. Marinazzo, L. Nitti, M. Pellicoro, G.D. Pinna and S. Stramaglia (2005)
Leave-one-out prediction error of systolic arterial pressure time series under paced breathing
in Physiological measurement (Print)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- N. Ancona, R. Maestri, D. Marinazzo, L. Nitti, M. Pellicoro, G.D. Pinna and S. Stramaglia (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1 Istituto di Studi sui Sistemi Intelligenti per l'Automazione, CNR, Bari, Italy
2 Dipartimento di Bioingegneria e Tecnologie Biomediche, Fondazione Salvatore Maugeri, IRCCS Istituto Scientifico di Montescano (PV), Italy
3 TIRES-Center of Innovative Technologies for Signal Detection and Processing, University of Bari, Italy
4 Dipartimento Interateneo di Fisica, Bari, Italy
5 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
6 Dipartimento di Biochimica Medica, Biologia Medica e Fisica Medica, University of Bari, Italia (literal)
- Titolo
- Leave-one-out prediction error of systolic arterial pressure time series under paced breathing (literal)
- Abstract
- In this paper, we consider systolic arterial pressure time series from healthy subjects and chronic heart failure patients, undergoing paced respiration, and show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. We model time series by the regularized least-squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular and thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. Using a Gaussian kernel, so that all orders of nonlinearity are taken into account, the leave-one-out error separates controls from patients, and alive patients from patients for whom cardiac death occurred. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi