A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions (Articolo in rivista)

Type
Label
  • A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.jneumeth.2011.08.047 (literal)
Alternative label
  • Cerasa, Antonio; Bilotta, Eleonora; Augimeri, Antonio; Cherubini, Andrea; Pantano, Pietro; Zito, Giancarlo; Lanza, Pierluigi Luigi; Valentino, Paola; Gioia, Maria Cecilia; Quattrone, A. (2012)
    A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions
    in Journal of neuroscience methods
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Cerasa, Antonio; Bilotta, Eleonora; Augimeri, Antonio; Cherubini, Andrea; Pantano, Pietro; Zito, Giancarlo; Lanza, Pierluigi Luigi; Valentino, Paola; Gioia, Maria Cecilia; Quattrone, A. (literal)
Pagina inizio
  • 193 (literal)
Pagina fine
  • 199 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/record/display.url?eid=2-s2.0-81555197018&origin=inward (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 203 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 1 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Consiglio Nazionale delle Ricerche; Universita della Calabria; Universita degli studi Magna Graecia di Catanzaro; Casa di Cura San Raffaele Cassino (literal)
Titolo
  • A Cellular Neural Network methodology for the automated segmentation of multiple sclerosis lesions (literal)
Abstract
  • We present a new application based on genetic algorithms (GAs) that evolves a Cellular Neural Network (CNN) capable of automatically determining the lesion load in multiple sclerosis (MS) patients from magnetic resonance imaging (MRI). In particular, it seeks to identify brain areas affected by lesions, whose presence is revealed by areas of higher intensity if compared to healthy tissue. The performance of the CNN algorithm has been quantitatively evaluated by comparing the CNN output with the expert's manual delineation of MS lesions. The CNN algorithm was run on a data set of 11 MS patients; for each one a single dataset of MRI images (matrix resolution of 256 × 256 pixels) was acquired. Our automated approach gives satisfactory results showing that after the learning process the CNN is capable of detecting MS lesions with different shapes and intensities (mean DICE coefficient = 0.64). The system could provide a useful support tool for the evaluation of lesions in MS patients, although it needs to be evolved and developed in the future. © 2011 Elsevier B.V. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it