Adaptive langevin sampler for separation of t-distribution modelled astrophysical maps (Articolo in rivista)

Type
Label
  • Adaptive langevin sampler for separation of t-distribution modelled astrophysical maps (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/TIP.2010.2048613 (literal)
Alternative label
  • Kayabol K.; Kuruoglu E. E.; Sanz J. L.; Sankur B.; Salerno E.; Herranz D. (2010)
    Adaptive langevin sampler for separation of t-distribution modelled astrophysical maps
    in IEEE transactions on image processing
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Kayabol K.; Kuruoglu E. E.; Sanz J. L.; Sankur B.; Salerno E.; Herranz D. (literal)
Pagina inizio
  • 2357 (literal)
Pagina fine
  • 2368 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5451169&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5451169 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 19 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Ieee Transactions on Image Processing, vol. 19 (9) pp. 2357 - 2368. IEEE, 2010. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 12 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 9 (literal)
Note
  • Scopu (literal)
  • Google Scholar (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, IFCA, Cantabria, Spagna, Bogazici University, Turchia (literal)
Titolo
  • Adaptive langevin sampler for separation of t-distribution modelled astrophysical maps (literal)
Abstract
  • We propose to model the image differentials of astrophysical source maps by Student's t-distribution and to use them in the Bayesian source separation method as priors. We introduce an efficient Markov Chain Monte Carlo (MCMC) sampling scheme to unmix the astrophysical sources and describe the derivation details. In this scheme, we use the Langevin stochastic equation for transitions, which enables parallel drawing of random samples from the posterior, and reduces the computation time significantly (by two orders of magnitude). In addition, Student's t-distribution parameters are updated throughout the iterations. The results on astrophysical source separation are assessed with two performance criteria defined in the pixel and the frequency domains. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it