http://www.cnr.it/ontology/cnr/individuo/prodotto/ID44275
Encoding ordinal features into binary features for text classification (Articolo in rivista)
- Type
- Label
- Encoding ordinal features into binary features for text classification (Articolo in rivista) (literal)
- Anno
- 2009-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Esuli A.; Sebastiani F. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
- In: ECIR'09 - 31st European Conference on Information Retrieval (Toulouse, FR, 7-9 April 2009). Proceedings, pp. 771 - 775. Mohand Boughanem, Catherine Berrut, Josiane Mothe, Chantal Soule-Dupuy (eds.). (Lecture Notes in Computer Science, vol. 5478). Springer Verlag, 2009. (literal)
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Titolo
- Encoding ordinal features into binary features for text classification (literal)
- Abstract
- We propose a method by means of which supervised learning algorithms that only accept binary input can be extended to use ordinal (i.e., integer-valued) input. This is much needed in text classification, since it becomes thus possible to endow these learning devices with term frequency information, rather than just information on the presence/absence of the term in the document. We test two different learners based on ``boosting'', and show that the use of our method allows them to obtain effectiveness gains. We also show that one of these boosting methods, once endowed with the representations generated by our method, outperforms an SVM learner with tfidf-weighted input. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di