Automatically determining attitude type and force for sentiment analysis (Articolo in rivista)

Type
Label
  • Automatically determining attitude type and force for sentiment analysis (Articolo in rivista) (literal)
Anno
  • 2009-01-01T00:00:00+01:00 (literal)
Alternative label
  • Argamon S.; Bloom K.; Esuli A.; Sebastiani F. (2009)
    Automatically determining attitude type and force for sentiment analysis
    in Lecture notes in computer science
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Argamon S.; Bloom K.; Esuli A.; Sebastiani F. (literal)
Pagina inizio
  • 218 (literal)
Pagina fine
  • 231 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 5603 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • In: Human Language Technology. Challenges of the Information Society. pp. 218 - 231. Hans Uszkoreit, Zygmunt Vetulani (eds.). (Lecture Notes in Computer Science, vol. 5603). Heidelberg: Springer Verlag, 2009. (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Linguistic Cognition Laboratory Department of Computer Science, Illinois Institute of Technology, Chicago, CNR-ISTI, Pisa (literal)
Titolo
  • Automatically determining attitude type and force for sentiment analysis (literal)
Abstract
  • Recent work in sentiment analysis has begun to apply fine-grained semantic distinctions between expressions of attitude as features for textual analysis. Such methods, however, require the construction of large and complex lexicons, giving values for multiple sentiment-related attributes to many different lexical items. For example, a key attribute is what type of attitude is expressed by a lexical item; e.g., beautiful expresses appreciation of an object's quality, while evil expresses a negative judgement of social behavior. In this paper we describe a method for the automatic determination of complex sentiment-related attributes such as attitude type and force, by applying supervised learning to WordNet glosses. Experimental results show that the method achieves good effectiveness, and is therefore well-suited to contexts in which these lexicons need to be generated from scratch. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it