ExAnte: a preprocessing method for frequent-pattern mining (Articolo in rivista)

Type
Label
  • ExAnte: a preprocessing method for frequent-pattern mining (Articolo in rivista) (literal)
Anno
  • 2005-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/MIS.2005.45 (literal)
Alternative label
  • Bonchi F.; Giannotti F.; Mazzanti A.; Pedreschi D. (2005)
    ExAnte: a preprocessing method for frequent-pattern mining
    in IEEE intelligent systems; IEEE, New York (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Bonchi F.; Giannotti F.; Mazzanti A.; Pedreschi D. (literal)
Pagina inizio
  • 25 (literal)
Pagina fine
  • 31 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1439476&contentType=Journals+%26+Magazines&searchField%3DSearch_All%26queryText%3DExAnte%3A+a+preprocessing+method+for+frequent-pattern+mining (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 20 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • Vol. 20 n. 3, pp. 25-3. IEEE, 2005. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 7 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
  • Google Scholar (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa CNR-ISTI, Pisa LIST S.p.A. University of Pisa's, Computer Science Department (literal)
Titolo
  • ExAnte: a preprocessing method for frequent-pattern mining (literal)
Abstract
  • Abstract_Discovering frequent patterns in large datasets is one of the more pervasive data mining tasks. Albeit rooted in market basket analysis, frequent pattern mining can be adopted in many applications, and on data sources of different nature and structure; it also provides a basis for several other mining tasks, such as association rules, classification, and clustering. However, frequent pattern mining is inherently difficult, in that it handles typically too many input data, which typically yield too many patterns as a result - this is often an insuperable obstacle, both for performance limitations and for the impossibility to discern the interesting patterns from the many, mostly uninteresting, extracted ones. Preprocessing based on data reduction and userspecified constraints may be the solution to this problem: it may drive the mining process towards potentially interesting patterns, while enabling query optimizations at the same time. We show how this can be achieved on the basis of a simple yet powerful idea: combine constraints of different nature to the purpose of dramatically reducing the input database. The mining process after such preprocessing is strikingly optimized, both in terms of performance, and in capability of focussing on interesting patterns. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it