http://www.cnr.it/ontology/cnr/individuo/prodotto/ID43414
Microscale Computational Simulation and Experimental Measurement of Thermal Residual Stresses in Glass-Alumina Functionally Graded Materials (Articolo in rivista)
- Type
- Label
- Microscale Computational Simulation and Experimental Measurement of Thermal Residual Stresses in Glass-Alumina Functionally Graded Materials (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.jeurceramsoc.2005.02.012 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- V. Cannillo; M. Montorsi; C. Siligardi: A. Sola; G. de Portu; L. Micele; G. Pezzotti (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://www.sciencedirect.com/science/article/pii/S0955221905002931 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- V. Cannillo, M. Montorsi, C. Siligardi, A. Sola, Dipartimento di Ingegneria dei Materiali e dell'Ambiente, University of Modena e Reggio Emilia, Via Vignolese 905/A, 41100 Modena, Italy;
G. de Portu, L. Micele, Institute of Science and Technology for Ceramics (ISTEC CNR), Via Granarolo, 64-48018 Faenza, Italy;
G. Pezzotti, Research Institute for Nanoscience (RIN), Ceramic Physics Laboratory, Kyoto Institute of Technology (KIT), Sakyo-ku, Matsugasaki 606, 8585 Kyoto, Japan (literal)
- Titolo
- Microscale Computational Simulation and Experimental Measurement of Thermal Residual Stresses in Glass-Alumina Functionally Graded Materials (literal)
- Abstract
- Glass alumina functionally graded materials are new attractive composite materials, that can achieve peculiar mechanical properties due to their gradual compositional variation. Nevertheless, the difference between the coefficients of thermal expansion of the constituent phases may result in significant thermal residual stresses in service or during fabrication. A proper glass formulation can minimize the mismatch in thermo-mechanical properties, thus relevantly reducing the mean value of the resultant thermal stresses. However, it is a crucial requirement to evaluate the effect of microstructural discreteness and randomness on the actual stress distribution in functionally graded materials. With this aim, a computational model which applies the finite element method at the microscale is used. The careful modelling of the real microstructural details enables to accurately predict the local stress values and distribution. In order to verify the reliability of the computational simulations, the residual thermal stresses were also experimentally measured by means of a piezo-spectroscopic technique. The comparison between the numerical and the experimental results validate the microstructure-based model. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di