http://www.cnr.it/ontology/cnr/individuo/prodotto/ID329758
Distributional correspondence indexing for cross-language text categorization (Contributo in atti di convegno)
- Type
- Label
- Distributional correspondence indexing for cross-language text categorization (Contributo in atti di convegno) (literal)
- Anno
- 2015-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-319-16354-3_12 (literal)
- Alternative label
Esuli A., Fernandez A.M. (2015)
Distributional correspondence indexing for cross-language text categorization
in ECIR 2015 - Advances in Information Retrieval. 37th European Conference on IR Research, Vienna, Austria, 29 March - 2 April 2015
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Esuli A., Fernandez A.M. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://link.springer.com/chapter/10.1007%2F978-3-319-16354-3_12 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Rivista
- Note
- PuMa (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- CNR-ISTI, Pisa, Italy (literal)
- Titolo
- Distributional correspondence indexing for cross-language text categorization (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-319-16353-6 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Allan Hanbury, Gabriella Kazai, Andreas Rauber, Norbert Fuhr (literal)
- Abstract
- Cross-Language Text Categorization (CLTC) aims at producing a classifier for a target language when the only available training examples belong to a different source language. Existing CLTC methods are usually affected by high computational costs, require external linguistic resources, or demand a considerable human annotation effort. This paper presents a simple, yet effective, CLTC method based on projecting features from both source and target languages into a common vector space, by using a computationally lightweight distributional correspondence profile with respect to a small set of pivot terms. Experiments on a popular sentiment classification dataset show that our method performs favorably to state-of-the-art methods, requiring a significantly reduced computational cost and minimal human intervention. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di