http://www.cnr.it/ontology/cnr/individuo/prodotto/ID327075
On the derivative of the stress-strain relation in a no-tension material (Articolo in rivista)
- Type
- Label
- On the derivative of the stress-strain relation in a no-tension material (Articolo in rivista) (literal)
- Anno
- 2015-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1177/1081286515571786 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Padovani C., ?ilhavý M. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Progetto: Short Term Mobility Program, CNR, 2013, 2014
Disciplina di riferimento: Civil Engineering (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://mms.sagepub.com/content/early/2015/02/24/1081286515571786 (literal)
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- CNR-ISTI, Pisa, Italy; Mathematical Institute of the Academy of Sciences of the Czech Republic (literal)
- Titolo
- On the derivative of the stress-strain relation in a no-tension material (literal)
- Abstract
- The stress-strain relation of a no-tension material, used to model masonry structures, is determined by the nonlinear projection of the strain tensor onto the image of the convex cone of negative-semidefinite stresses under the fourth-order tensor of elastic compliances. We prove that the stress-strain relation is indefinitely differentiable on an open dense subset O of the set of all strains. The set O consists of four open connected regions determined by the rank k = 0, 1, 2, 3 of the resulting stress. Further, an equation for the derivative of the stress-strain relation is derived. This equation cannot be solved explicitly in the case of a material of general symmetry, but it is shown that for an isotropic material this leads to the derivative established earlier by Lucchesi et al. (Int J Solid Struct 1996; 33: 1961-1994 and Masonry constructions: Mechanical models and numerical applications. Berlin: Springer, 2008) by different means. For a material of general symmetry, when the tensor of elasticities does not have the representation known in the isotropic case, only general steps leading to the evaluation of the derivative are described. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di