Monte Carlo simulations of the unitary Bose gas (Articolo in rivista)

Type
Label
  • Monte Carlo simulations of the unitary Bose gas (Articolo in rivista) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1103/PhysRevA.89.041602 (literal)
Alternative label
  • Rossi, Maurizio; Salasnich, Luca; Ancilotto, Francesco; Toigo, Flavio (2014)
    Monte Carlo simulations of the unitary Bose gas
    in Physical review. A
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Rossi, Maurizio; Salasnich, Luca; Ancilotto, Francesco; Toigo, Flavio (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 89 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 4 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 4 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • University of Padua; University of Padua; Consiglio Nazionale delle Ricerche (CNR) (literal)
Titolo
  • Monte Carlo simulations of the unitary Bose gas (literal)
Abstract
  • We investigate the zero-temperature properties of a diluted homogeneous Bose gas made of N particles interacting via a two-body square-well potential by performing Monte Carlo simulations. We tune the interaction strength to achieve arbitrary positive values of the scattering length and compute by Monte Carlo quadrature the energy per particle E/N and the condensate fraction N-0/N of this system by using a Jastrow ansatz for the many-body wave function, which avoids the formation of the self-bound ground state and describes instead a (metastable) gaseous state with uniform density. In the unitarity limit, where the scattering length diverges while the range of the interatomic potential is much smaller than the average distance between atoms, we find a finite energy per particle [E/N=0.70 [sic](2)(6 pi(2)n)(2/3)/2m, with n the number density] and a quite large condensate fraction (N-0/N=0.83). (literal)
Prodotto di
Autore CNR

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it