Defining, contouring, and visualizing scalar functions on point-sampled surfaces (Articolo in rivista)

Type
Label
  • Defining, contouring, and visualizing scalar functions on point-sampled surfaces (Articolo in rivista) (literal)
Anno
  • 2011-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.cad.2010.11.010 (literal)
Alternative label
  • Patane, Giuseppe; Falcidieno, Bianca (2011)
    Defining, contouring, and visualizing scalar functions on point-sampled surfaces
    in Computer Aided Design
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Patane, Giuseppe; Falcidieno, Bianca (literal)
Pagina inizio
  • 227 (literal)
Pagina fine
  • 246 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 43 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 20 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Consiglio Nazionale delle Ricerche (CNR) (literal)
Titolo
  • Defining, contouring, and visualizing scalar functions on point-sampled surfaces (literal)
Abstract
  • This paper addresses the definition, contouring, and visualization of scalar functions on unorganized point sets, which are sampled from a surface in 3D space; the proposed framework builds on moving least-squares techniques and implicit modeling. Given a scalar function f : P -> R, defined on a point set P, the idea behind our approach is to exploit the local connectivity structure of the k-nearest neighbor graph of P and mimic the contouring of scalar functions defined on triangle meshes. Moving least-squares and implicit modeling techniques are used to extend f from P to the surface M underlying P. To this end, we compute an analytical approximation (f) over tilde of f that allows us to provide an exact differential analysis of (f) over tilde, draw its iso-contours, visualize its behavior on and around M, and approximate its critical points. We also compare moving least-squares and implicit techniques for the definition of the scalar function underlying f and discuss their numerical stability and approximation accuracy. Finally, the proposed framework is a starting point to extend those processing techniques that build on the analysis of scalar functions on 2-manifold surfaces to point sets. (c) 2010 Elsevier Ltd. All rights reserved. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it