http://www.cnr.it/ontology/cnr/individuo/prodotto/ID31608
Defining, contouring, and visualizing scalar functions on point-sampled surfaces (Articolo in rivista)
- Type
- Label
- Defining, contouring, and visualizing scalar functions on point-sampled surfaces (Articolo in rivista) (literal)
- Anno
- 2011-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/j.cad.2010.11.010 (literal)
- Alternative label
Patane, Giuseppe; Falcidieno, Bianca (2011)
Defining, contouring, and visualizing scalar functions on point-sampled surfaces
in Computer Aided Design
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Patane, Giuseppe; Falcidieno, Bianca (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Consiglio Nazionale delle Ricerche (CNR) (literal)
- Titolo
- Defining, contouring, and visualizing scalar functions on point-sampled surfaces (literal)
- Abstract
- This paper addresses the definition, contouring, and visualization of scalar functions on unorganized point sets, which are sampled from a surface in 3D space; the proposed framework builds on moving least-squares techniques and implicit modeling. Given a scalar function f : P -> R, defined on a point set P, the idea behind our approach is to exploit the local connectivity structure of the k-nearest neighbor graph of P and mimic the contouring of scalar functions defined on triangle meshes. Moving least-squares and implicit modeling techniques are used to extend f from P to the surface M underlying P. To this end, we compute an analytical approximation (f) over tilde of f that allows us to provide an exact differential analysis of (f) over tilde, draw its iso-contours, visualize its behavior on and around M, and approximate its critical points. We also compare moving least-squares and implicit techniques for the definition of the scalar function underlying f and discuss their numerical stability and approximation accuracy. Finally, the proposed framework is a starting point to extend those processing techniques that build on the analysis of scalar functions on 2-manifold surfaces to point sets. (c) 2010 Elsevier Ltd. All rights reserved. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di