Multidimensional size functions for shape comparison (Articolo in rivista)

Type
Label
  • Multidimensional size functions for shape comparison (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s10851-008-0096-z (literal)
Alternative label
  • Biasotti S.; Cerri A.; Frosini P.; Giorgi D.; Landi C. (2008)
    Multidimensional size functions for shape comparison
    in Journal of mathematical imaging and vision (Dordr., Online)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Biasotti S.; Cerri A.; Frosini P.; Giorgi D.; Landi C. (literal)
Pagina inizio
  • 161 (literal)
Pagina fine
  • 179 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.springerlink.com/content/n0h1786204274280/ (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 32 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • Springer 2008 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 2 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
  • athematical Reviews on the web (MathSciNet) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • IMATI, Consiglio Nazionale delle Ricerche, ARCES, Università di Bologna, Dipartimento di Matematica, Università di Bologna Dipartimento di Scienze e Metodi dell'Ingegneria, Università di Modena e Reggio Emilia (literal)
Titolo
  • Multidimensional size functions for shape comparison (literal)
Abstract
  • Size Theory has proven to be a useful framework for shape analysis in the context of pattern recognition. Its main tool is a shape descriptor called size function. Size Theory has been mostly developed in the 1-dimensional setting, meaning that shapes are studied with respect to functions, defined on the studied objects, with values in R. The potentialities of the k-dimensional setting, that is using functions with values in R k , were not explored until now for lack of an efficient computational approach. In this paper we provide the theoretical results leading to a concise and complete shape descriptor also in the multidimensional case. This is possible because we prove that in Size Theory the comparison of multidimensional size functions can be reduced to the 1-dimensional case by a suitable change of variables. Indeed, a foliation in half-planes can be given, such that the restriction of a multidimensional size function to each of these half-planes turns out to be a classical size function in two scalar variables. This leads to the definition of a new distance between multidimensional size functions, and to the proof of their stability with respect to that distance. Experiments are carried out to show the feasibility of the method. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it