http://www.cnr.it/ontology/cnr/individuo/prodotto/ID31151
Kernel B-splines and interpolation (Articolo in rivista)
- Type
- Label
- Kernel B-splines and interpolation (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s11075-005-9000-8 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Bozzini M.; Lenarduzzi L; and Schaback R. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Scopus (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Dip Matematica Applicata Universita' Milano Bicocca
IMATI CNR Milano
Universitat Goettingen (literal)
- Titolo
- Kernel B-splines and interpolation (literal)
- Abstract
- This paper
applies difference operators to
conditionally positive definite kernels
in order to generate
{\em kernel $B$--splines}
that have
fast decay towards infinity.
Interpolation by these new kernels
provides better condition of the
linear system, while the kernel $B$--spline inherits the
approximation orders from its native kernel.
We proceed in two different ways: either the kernel
$B$--spline is constructed adaptively on
the data knot set $X$, or we use
a fixed difference scheme and shift its associated
kernel $B$--spline
around. In the latter case,
the kernel $B$--spline so obtained
is strictly positive in general.
Furthermore, special
kernel $B$--splines obtained by hexagonal second finite differences
of multiquadrics are studied in more detail.
We give suggestions in order
to get a consistent
improvement of the condition of the interpolation matrix
in applications. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di