Mixed discontinuous Galerkin methods for Darcy flow (Articolo in rivista)

Type
Label
  • Mixed discontinuous Galerkin methods for Darcy flow (Articolo in rivista) (literal)
Anno
  • 2005-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1007/s10915-004-4150-8 (literal)
Alternative label
  • Brezzi F., Hughes T.J.R., Marini L.D., Masud A. (2005)
    Mixed discontinuous Galerkin methods for Darcy flow
    in Journal of scientific computing
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Brezzi F., Hughes T.J.R., Marini L.D., Masud A. (literal)
Pagina inizio
  • 119 (literal)
Pagina fine
  • 145 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 22 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 1 (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Brezzi - IMATI CNR Hughes - ICES- University of Austin-USA Marini - Dip di Matematica, Universita` di Pavia Masud - Dept Civil & Mat Engn, University of Illinois, USA (literal)
Titolo
  • Mixed discontinuous Galerkin methods for Darcy flow (literal)
Abstract
  • We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements ( both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods ( see e. g. D. N. Arnold et al. SIAM J. Numer. Anal. 39, 1749 - 1779 ( 2002) and B. Cockburn, G. E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, ( Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree >= 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods ( namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference \"Numerical methods for fluid dynamics V\", Clarendon Press, Oxford 1995) and Baumann - Oden Comput. Meth. Appl. Mech. Eng. 175, 311 341 ( 1999). (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it