http://www.cnr.it/ontology/cnr/individuo/prodotto/ID31046
Mixed discontinuous Galerkin methods for Darcy flow (Articolo in rivista)
- Type
- Label
- Mixed discontinuous Galerkin methods for Darcy flow (Articolo in rivista) (literal)
- Anno
- 2005-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/s10915-004-4150-8 (literal)
- Alternative label
Brezzi F., Hughes T.J.R., Marini L.D., Masud A. (2005)
Mixed discontinuous Galerkin methods for Darcy flow
in Journal of scientific computing
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Brezzi F., Hughes T.J.R., Marini L.D., Masud A. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Brezzi - IMATI CNR
Hughes - ICES- University of Austin-USA
Marini - Dip di Matematica, Universita` di Pavia
Masud - Dept Civil & Mat Engn, University of Illinois, USA (literal)
- Titolo
- Mixed discontinuous Galerkin methods for Darcy flow (literal)
- Abstract
- We consider a family of mixed finite element discretizations of the Darcy flow equations using totally discontinuous elements ( both for the pressure and the flux variable). Instead of using a jump stabilization as it is usually done for discontinuos Galerkin (DG) methods ( see e. g. D. N. Arnold et al. SIAM J. Numer. Anal. 39, 1749 - 1779 ( 2002) and B. Cockburn, G. E. Karniadakis and C.-W. Shu, DG methods: Theory, computation and applications, ( Springer, Berlin, 2000) and the references therein) we use the stabilization introduced in A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation). We show that such stabilization works for discontinuous elements as well, provided both the pressure and the flux are approximated by local polynomials of degree >= 1, without any need for additional jump terms. Surprisingly enough, after the elimination of the flux variable, the stabilization of A. Masud and T. J. R. Hughes, Meth. Appl. Mech. Eng. 191, 4341 - 4370 ( 2002) and T. J. R. Hughes, A. Masud, and J. Wan, ( in preparation) turns out to be in some cases a sort of jump stabilization itself, and in other cases a stable combination of two originally unstable DG methods ( namely, Bassi-Rebay F. Bassi and S. Rebay, Proceedings of the Conference \"Numerical methods for fluid dynamics V\", Clarendon Press, Oxford 1995) and Baumann - Oden Comput. Meth. Appl. Mech. Eng. 175, 311 341 ( 1999). (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di