http://www.cnr.it/ontology/cnr/individuo/prodotto/ID310323
Probing short-range protein Brownian motion in the cytoplasm of living cells (Articolo in rivista)
- Type
- Label
- Probing short-range protein Brownian motion in the cytoplasm of living cells (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1038/ncomms6891 (literal)
- Alternative label
Di Rienzo, Carmine [ 1,2,3 ]; Piazza, Vincenzo[ 1 ] ; Gratton, Enrico[ 4 ] ; Beltram, Fabio[ 1,2,3 ]; Cardarelli, Francesco[ 1 ] (2014)
Probing short-range protein Brownian motion in the cytoplasm of living cells
in Nature communications
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Di Rienzo, Carmine [ 1,2,3 ]; Piazza, Vincenzo[ 1 ] ; Gratton, Enrico[ 4 ] ; Beltram, Fabio[ 1,2,3 ]; Cardarelli, Francesco[ 1 ] (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- [ 1 ] Ist Italiano Tecnol, Ctr Nanotechnol Innovat NEST, I-56127 Pisa, Italy
[ 2 ] Scuola Normale Super Pisa, CNR, NEST, I-56127 Pisa, Italy
[ 3 ] CNR, Ist Nanosci, I-56127 Pisa, Italy
[ 4 ] Univ Calif Irvine, Dept Biomed Engn, Fluorescence Dynam Lab, Irvine, CA 92697 USA (literal)
- Titolo
- Probing short-range protein Brownian motion in the cytoplasm of living cells (literal)
- Abstract
- The translational motion of molecules in cells deviates from what is observed in dilute solutions. Theoretical models provide explanations for this effect but with predictions that drastically depend on the nanoscale organization assumed for macromolecular crowding agents. A conclusive test of the nature of the translational motion in cells is missing owing to the lack of techniques capable of probing crowding with the required temporal and spatial resolution. Here we show that fluorescence-fluctuation analysis of raster scans at variable timescales can provide this information. By using green fluorescent proteins in cells, we measure protein motion at the unprecedented timescale of 1 ms, unveiling unobstructed Brownian motion from 25 to 100 nm, and partially suppressed diffusion above 100 nm. Furthermore, experiments on model systems attribute this effect to the presence of relatively immobile structures rather than to diffusing crowding agents. We discuss the implications of these results for intracellular processes. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi