http://www.cnr.it/ontology/cnr/individuo/prodotto/ID30953
Analysis of a stabilized three-fields domain decomposition method (Articolo in rivista)
- Type
- Label
- Analysis of a stabilized three-fields domain decomposition method (Articolo in rivista) (literal)
- Anno
- 2003-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Bertoluzza, S.(1) (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
- Impact Factor rivista: 1.206 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
- The recent technological development in the framework of large parallel
computers give more and more important to the issue of \"scalability\":
doubling the number of processors should allow to halven the time needed for
the solution of a given problem. For this it is necessary that the quality of
the solution depends only on the degrees of freedom globally used, and not on how these are
split among processors. In the
framework of the three fields domain decomposition method, the result proven
in this paper is an important step in this direction.
(literal)
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- Titolo
- Analysis of a stabilized three-fields domain decomposition method (literal)
- Abstract
- In this paper we prove that, for suitable choices of the bilinear form involved in the stabilization procedure, the stabilized three fields domain decomposition method proposed in the paper \"Wavelet Stabilization and Preconditioning for Domain Decomposition\" (by S. Bertoluzza and A. Kunoth), is stable and convergent uniformly in the number of subdomains and with respect to their sizes under quite general assumptions on the decomposition and on the discretization spaces. The same is proven to hold for the resulting discrete Steklov-Poincaré operator. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di