http://www.cnr.it/ontology/cnr/individuo/prodotto/ID309245
The Mimetic Finite Difference Method for Elliptic Problems. Preface (Monografia o trattato scientifico)
- Type
- Label
- The Mimetic Finite Difference Method for Elliptic Problems. Preface (Monografia o trattato scientifico) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-319-02663-3 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Lourenco Beirao da Veiga; Konstantin Lipnikov; Gianmarco Manzini (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatori
- L. Beirao da Veiga, K. Lipnikov, G. Manzini (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- University of Milan; Los Alamos National Laboratory; IMATI-CNR (literal)
- Titolo
- The Mimetic Finite Difference Method for Elliptic Problems. Preface (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-319-02662-6 (literal)
- Abstract
- This book offers a systematic and thorough examination of theoretical and computational
aspects of the modem mimetic finite difference (MFD) method. The MFD
method preserves or mimics underlying properties of physical and mathematical models,
thereby improving the fidelity and predictive capability of computer simulations.
We focus here on the numerical solution of elliptic partial differential equation (PDEs)
on unstructured polygonal and polyhedral meshes for which the MFD method has
proven to be very successful in the last five decades. (literal)
- Editore
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Editore di