Non-linear atmospheric stability indices by neural network modelling (Articolo in rivista)

Type
Label
  • Non-linear atmospheric stability indices by neural network modelling (Articolo in rivista) (literal)
Anno
  • 2003-01-01T00:00:00+01:00 (literal)
Alternative label
  • Pasini A., Perrino C., Zujic A. (2003)
    Non-linear atmospheric stability indices by neural network modelling
    in Il Nuovo cimento della Società italiana di fisica. C. Geophysics and space physics (Testo stamp.)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Pasini A., Perrino C., Zujic A. (literal)
Pagina inizio
  • 633 (literal)
Pagina fine
  • 638 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 26 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
  • doi:10.1393/ncc/i2004-10001-7 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
  • New atmospheric stability indices have been recently developed for the evaluation of primary pollution and the application results show their ability to grasp the physical features of the boundary layer. They are based on radon progeny measurements and multiple linear correlations with benzene. Here, neural networks are used in order to catch non-linearities in the boundary layer and to build non-linear indices. Their application to the modelling of benzene behaviour shows better prognostic results if compared with those coming from linear indices. (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. CNR_IIA 2. CNR-IIA 3. VINCA INST. (literal)
Titolo
  • Non-linear atmospheric stability indices by neural network modelling (literal)
Abstract
  • New atmospheric stability indices have been recently developed for the evaluation of primary pollution and the application results show their ability to grasp the physical features of the boundary layer. They are based on radon progeny measurements and multiple linear correlations with benzene. Here, neural networks are used in order to catch non-linearities in the boundary layer and to build non-linear indices. Their application to the modelling of benzene behaviour shows better prognostic results if compared with those coming from linear indices. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it