http://www.cnr.it/ontology/cnr/individuo/prodotto/ID30622
Non-linear atmospheric stability indices by neural network modelling (Articolo in rivista)
- Type
- Label
- Non-linear atmospheric stability indices by neural network modelling (Articolo in rivista) (literal)
- Anno
- 2003-01-01T00:00:00+01:00 (literal)
- Alternative label
Pasini A., Perrino C., Zujic A. (2003)
Non-linear atmospheric stability indices by neural network modelling
in Il Nuovo cimento della Società italiana di fisica. C. Geophysics and space physics (Testo stamp.)
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Pasini A., Perrino C., Zujic A. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#note
- doi:10.1393/ncc/i2004-10001-7 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#descrizioneSinteticaDelProdotto
- New atmospheric stability indices have been recently developed for the evaluation of primary pollution and the application results show their ability to grasp the physical features of the boundary layer. They are based on radon progeny measurements and multiple linear correlations with benzene. Here, neural networks are used in order to catch non-linearities in the boundary layer and to build non-linear indices. Their application to the modelling of benzene behaviour shows better prognostic results if compared with those coming from linear indices. (literal)
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- 1. CNR_IIA 2. CNR-IIA 3. VINCA INST. (literal)
- Titolo
- Non-linear atmospheric stability indices by neural network modelling (literal)
- Abstract
- New atmospheric stability indices have been recently developed for the evaluation of primary pollution and the application results show their ability to grasp the physical features of the boundary layer. They are based on radon progeny measurements and multiple linear correlations with benzene. Here, neural networks are used in order to catch non-linearities in the boundary layer and to build non-linear indices. Their application to the modelling of benzene behaviour shows better prognostic results if compared with those coming from linear indices. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di