http://www.cnr.it/ontology/cnr/individuo/prodotto/ID304372
An Evolutionary Approach for Image Segmentation (Articolo in rivista)
- Type
- Label
- An Evolutionary Approach for Image Segmentation (Articolo in rivista) (literal)
- Anno
- 2014-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1162/EVCO_a_00115 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Amelio, Alessia; Pizzuti, Clara (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- National Research Council Italy, CNR (literal)
- Titolo
- An Evolutionary Approach for Image Segmentation (literal)
- Abstract
- The paper explores the use of evolutionary techniques in dealing with the image segmentation problem. An image is modeled as a weighted undirected graph, where nodes correspond to pixels, and edges connect similar pixels. A genetic algorithm that uses a fitness function based on an extension of the normalized cut criterion is proposed. The algorithm employs the locus-based representation of individuals, which allows for the partitioning of images without setting the number of segments beforehand. A new concept of nearest neighbor that takes into account not only the spatial location of a pixel, but also the affinity with the other pixels contained in the neighborhood, is also defined. Experimental results show that our approach is able to segment images in a number of regions that conform well to human visual perception. The visual perceptiveness is substantiated by objective evaluation methods based on uniformity of pixels inside a region, and comparison with ground-truth segmentations available for part of the used test images. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di