A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization (Contributo in atti di convegno)

Type
Label
  • A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization (Contributo in atti di convegno) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1109/ICMLA.2013.38 (literal)
Alternative label
  • Costa, Gianni; Ortale, Riccardo (2013)
    A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization
    in International Conference on Machine Learning and Applications (ICMLA)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Costa, Gianni; Ortale, Riccardo (literal)
Pagina inizio
  • 179 (literal)
Pagina fine
  • 184 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.scopus.com/record/display.url?eid=2-s2.0-84899452286&origin=inward (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 1 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
  • 1 (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • Istituto Di Calcolo E Reti Ad Alte Prestazioni, Rende (literal)
Titolo
  • A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization (literal)
Abstract
  • Non-negative matrix factorization is intensively used in text clustering. We investigate its exploitation in the XML domain for clustering XML documents by structure and content into topically homogeneous groups. Non-negative matrix factorization is performed through an alternating least squares method, which incorporates expedients to attenuate the burden of large-scale factorizations. This is especially relevant when massive text-centric XML corpora are processed. Empirical evidence from a comparative evaluation on real-world XML corpora reveals that our approach overcomes several state-of-the-art competitors in effectiveness. © 2013 IEEE. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
data.CNR.it