The patterns of musical influence on the Last.Fm social network (Contributo in atti di convegno)

Type
Label
  • The patterns of musical influence on the Last.Fm social network (Contributo in atti di convegno) (literal)
Anno
  • 2014-01-01T00:00:00+01:00 (literal)
Alternative label
  • Pennacchioli D., Rossetti G., Pappalardo L., Pedreschi D., Giannotti F., Coscia M. (2014)
    The patterns of musical influence on the Last.Fm social network
    in 22nd Italian Symposium on Advanced Database Systems, Castellammare di Stabia, Italy, 16-18 June 2014
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Pennacchioli D., Rossetti G., Pappalardo L., Pedreschi D., Giannotti F., Coscia M. (literal)
Pagina inizio
  • 284 (literal)
Pagina fine
  • 291 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • Grant agreement:270833 Tipo Progetto: EU (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 8 (literal)
Note
  • PuMa (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; Computer Science Department, University of Pisa; CNR-ISTI, Pisa, Italy; Harvard University, Cambridge, MA, USA (literal)
Titolo
  • The patterns of musical influence on the Last.Fm social network (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 9781634391450 (literal)
Abstract
  • One classic problem definition in social network analysis is the study of diffusion in networks, which enables us to tackle problems like favoring the adoption of positive technologies. Most of the attention has been turned to how to maximize the number of influenced nodes, but this approach misses the fact that different scenarios imply different diffusion dynamics, only slightly related to maximizing the number of nodes involved. In this paper we study the patterns of musical influence through a social network. First, we define a procedure to extract musical leaders, i.e. users who start the diffusion of new music albums through the social network. Second, we measure three different dimensions of musical influence: the Width, i.e. the ratio of neighbors influenced by a leader; the Depth, i.e. the degrees of separation from a leader to its influenced nodes; and the Strength, i.e. the intensity of the influence from a leader. We validate our results on a social network extracted from the Last.Fm music platform. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Insieme di parole chiave di
data.CNR.it