Using visual attention in a CBIR system - Experimental results on landmark and object recognition tasks (Contributo in atti di convegno)

Type
Label
  • Using visual attention in a CBIR system - Experimental results on landmark and object recognition tasks (Contributo in atti di convegno) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Alternative label
  • Cardillo F. A., Amato G., Falchi F. (2013)
    Using visual attention in a CBIR system - Experimental results on landmark and object recognition tasks
    in VISAPP 2013 - International Conference on Computer Vision Theory and Applications, Barcellona, Spain, 21-24 February 2013
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Cardillo F. A., Amato G., Falchi F. (literal)
Pagina inizio
  • 657 (literal)
Pagina fine
  • 662 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 1 (literal)
Note
  • Scopu (literal)
  • PuMa (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy; CNR-ISTI, Pisa, Italy. (literal)
Titolo
  • Using visual attention in a CBIR system - Experimental results on landmark and object recognition tasks (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-989-8565-47-1 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
  • Sebastiano Battiato, José Braz (literal)
Abstract
  • Many novel applications in the field of object recognition and pose estimation have been built relying on local invariant features extracted from key points that rely on high-contrast regions of the images. The visual saliency of the those regions is not considered by state-of-the art detection algorithms that assume the user is interested in the whole image. In this paper we present the experimental results of the application of a biologically-inspired model of visual attention to the problem of local feature selection in landmark and object recognition tasks. The results show that the approach improves the accuracy of the classifier in the object recognition task and preserves a good accuracy in the landmark recognition task. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Autore CNR di
Prodotto
Editore di
Insieme di parole chiave di
data.CNR.it