http://www.cnr.it/ontology/cnr/individuo/prodotto/ID272602
Solution of Infinite Linear Systems by Automatic Adaptive Iterations (Articolo in rivista)
- Type
- Label
- Solution of Infinite Linear Systems by Automatic Adaptive Iterations (Articolo in rivista) (literal)
- Anno
- 2000-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1016/S0024-3795(00)00177-4 (literal)
- Alternative label
Favati, Paola [1]; Lotti, Grazia [2]; Menchi, Ornella [3]; Romani, Francesco [3] (2000)
Solution of Infinite Linear Systems by Automatic Adaptive Iterations
in Linear algebra and its applications
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Favati, Paola [1]; Lotti, Grazia [2]; Menchi, Ornella [3]; Romani, Francesco [3] (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- [1] CNR-IIT, Pisa; [2] Dipartimento di Matematica, Universita' di Parma, 43100 Parma, Italy; [3] Dipartimento di Informatica, University of Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy (literal)
- Titolo
- Solution of Infinite Linear Systems by Automatic Adaptive Iterations (literal)
- Abstract
- The problem of approximating the solution of infinite linear systems finitely expressed by
a sparse coefficient matrix in block Hessenberg form is considered. The convergence of the
solutions of a sequence of truncated problems to the infinite problem solution is investigated.
A family of algorithms, some of which are adaptive, is introduced, based on the application
of the Gauss-Seidel method to a sequence of truncated problems of increasing size
$n_i$ with non-increasing tolerance ^{-t_i}$. These algorithms do not require special structural properties
of the coefficient matrix and they differ in the way the sequences $n_i$ and $t_i$ are generated.
The testing has been performed on both infinite problems arising from the discretization of
elliptical equations on unbounded domains and stochastic problems arising from queueing
theory. Extensive numerical experiments permit the evaluation of the various strategies and
suggest that the best trade-off between accuracy and computational cost is reached by some
of the adaptive algorithms. (literal)
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
- Insieme di parole chiave di