http://www.cnr.it/ontology/cnr/individuo/prodotto/ID269300
Eigenstates and instabilities of chains with embedded defects (Articolo in rivista)
- Type
- Label
- Eigenstates and instabilities of chains with embedded defects (Articolo in rivista) (literal)
- Anno
- 2013-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1063/1.4803523 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- J. D'Ambroise (1); P.G. Kevrekidis (2); S. Lepri (3) (literal)
- Pagina inizio
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://scitation.aip.org/content/aip/journal/chaos/23/2/10.1063/1.4803523 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
- Note
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- (1) Department of Mathematics, Bard College, Annandale-on-Hudson, New York 12504, USA
(2) Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003-4515, USA
(3) CNR-Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino, Italy (literal)
- Titolo
- Eigenstates and instabilities of chains with embedded defects (literal)
- Abstract
- We consider the eigenvalue problem for one-dimensional linear Schro?dinger lattices (tight-binding) with an embedded few-sites linear or nonlinear, Hamiltonian or non-conservative defect (an oligomer). Such a problem arises when considering scattering states in the presence of (generally complex) impurities as well as in the stability analysis of nonlinear waves. We describe a general approach based on a matching of solutions of the linear portions of the lattice at the location of the oligomer defect. As specific examples, we discuss both linear and nonlinear, Hamiltonian and PT-symmetric dimers and trimers. In the linear case, this approach provides us a handle for semi-analytically computing the spectrum [this amounts to the solution of a polynomial equation]. In the nonlinear case, it enables the computation of the linearization spectrum around the stationary solutions. The calculations showcase the oscillatory instabilities that strongly nonlinear states typically manifest. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Autore CNR di
- Prodotto
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi