On the identification of instabilities with neural networks on JET (Articolo in rivista)

Type
Label
  • On the identification of instabilities with neural networks on JET (Articolo in rivista) (literal)
Anno
  • 2013-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.nima.2013.03.039 (literal)
Alternative label
  • A. Murari; P. Arena; A. Buscarino; L. Fortuna; M. Iachello; JET-EFDA Contributors (2013)
    On the identification of instabilities with neural networks on JET
    in NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT; ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, AMSTERDAM (Paesi Bassi)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • A. Murari; P. Arena; A. Buscarino; L. Fortuna; M. Iachello; JET-EFDA Contributors (literal)
Pagina inizio
  • 2 (literal)
Pagina fine
  • 6 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#altreInformazioni
  • La rivista è pubblicata anche online con ISSN 1872-9576. (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://www.sciencedirect.com/science/article/pii/S0168900213003446 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 720 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 5 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1 : Associazione EURATOM-ENEA per la Fusione, Consorzio RFX, 4-35127 Padova, Italy; / 2,3,4,5 : Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi-Università degli Studi di Catania, 95125 Catania, Italy; / 6 : JET-EFDA, Culham Science Centre, OX14 3DB Abingdon, UK. (literal)
Titolo
  • On the identification of instabilities with neural networks on JET (literal)
Abstract
  • JET plasmas are affected by various instabilities, which can be particularly dangerous in high performance discharges. An identification method, based on the use of advanced neural networks, called Recurrent Neural Networks (RNNs), has been applied to ELMs. The potential of the recurrent networks to identify the dynamics of the instabilities has been first tested using synthetic data. The networks have then been applied to JET experimental signals. An appropriate selection of the networks topology allows identifying quite well the time evolution of the edge temperature and of the magnetic fields, considered the best indicators of the ELMs. A quite limited number of periodic oscillations are used to train the networks, which then manage to follow quite well the dynamics of the instabilities, in a recurrent configuration on one of the inputs. The time evolution of the aforementioned signals, also during intervals not used in the training and never seen by the networks, are properly reproduced. A careful analysis of the various terms in the RNNs has the potential to give clear indications about the nature of these instabilities and their dynamical behaviour. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Editore di
Insieme di parole chiave di
data.CNR.it