Hierarchical Latent Factors for Preference Data (Contributo in atti di convegno)

Type
Label
  • Hierarchical Latent Factors for Preference Data (Contributo in atti di convegno) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Alternative label
  • Barbieri N, Manco G, Ritacco E (2012)
    Hierarchical Latent Factors for Preference Data
    in Twentieth Italian Symposium on Advanced Database Systems, SEBD 2012, venezia, June 24-27, 2012
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Barbieri N, Manco G, Ritacco E (literal)
Note
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • ICAR-CNR (literal)
Titolo
  • Hierarchical Latent Factors for Preference Data (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
  • 978-88-96477-23-6 (literal)
Abstract
  • In this work we propose a probabilistic hierarchical generative approach for users' preference data, which is designed to overcome the limitation of current methodologies in Recommender Systems and thus to meet both prediction and recommendation accuracy. The Bayesian Hierarchical User Community Model (BH-UCM) focuses both on modeling the popularity of items and the distribution over item ratings. An extensive evaluation over two popular benchmark datasets shows that the combined modeling of item popularity and rating provides a powerful framework both for rating prediction and for the generation of accurate recommendation lists. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
data.CNR.it