On the heating mix of ITER (Articolo in rivista)

Type
Label
  • On the heating mix of ITER (Articolo in rivista) (literal)
Anno
  • 2010-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/0741-3335/52/12/124044 (literal)
Alternative label
  • Wagner F., Becoulet A., Budny R.V., Erckmann V., Farina D., Giruzzi G., Kamada Y., Kaye A., Koechl F., Marushchenko N., Murakami M., Oikawa T., Parail V., Park J.M., Ramponi G., Sauter O., Stork D., Tran M.Q., Ward D., Zohm H., Zucca C. (2010)
    On the heating mix of ITER
    in Plasma physics and controlled fusion (Print)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Wagner F., Becoulet A., Budny R.V., Erckmann V., Farina D., Giruzzi G., Kamada Y., Kaye A., Koechl F., Marushchenko N., Murakami M., Oikawa T., Parail V., Park J.M., Ramponi G., Sauter O., Stork D., Tran M.Q., Ward D., Zohm H., Zucca C. (literal)
Pagina inizio
  • 124044 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 52 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1. EURATOM, Max Planck Inst Plasmaphys, Garching, Germany 2. IRFM, CEA, F-13108 St Paul Les Durance, France 3. Princeton Plasma Phys Lab, Princeton, NJ 08543 USA 4. EURATOM ENEA CNR Assoc, Ist Fis Plasma, I-20125 Milan, Italy 5. Japan Atom Energy Res Inst, Naka Fus Res Estab, Naka, Ibaraki 31101, Japan 6. Assoc EURATOM OAW ATI, Atominst, Tu Wien, Austria 7. Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA 8. EFDA Close Support Unit, D-85748 Garching, Germany 9. Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England 10. Ecole Polytech Fed Lausanne, Assoc Euratom Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland 11. FUSION FOR ENERGY, Barcelona 08019, Spain 12. EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany (literal)
Titolo
  • On the heating mix of ITER (literal)
Abstract
  • This paper considers the heating mix of ITER for the two main scenarios. Presently, 73 MW of absorbed power are foreseen in the mix 20/33/20 for ECH, NBI and ICH. Given a sufficient edge stability, Q = 10-the goal of scenario 2-can be reached with 40MW power irrespective of the heating method but depends sensitively inter alia on the H-mode pedestal temperature, the density profile shape and on the characteristics of impurity transport. ICH preferentially heats the ions and would contribute specifically with Delta Q < 1.5. The success of the Q = 5 steady-state scenario 4 with reduced current requires discharges with improved confinement necessitating weakly or strongly reversed shear, f(bs) > 0.5, and strong off-axis current drive (CD). The findings presented here are based on revised CD efficiencies gamma for ECCD and a detailed benchmark of several CD codes. With ECCD alone, the goals of scenario 4 can hardly be reached. Efficient off-axis CD is only possible with NBI. With beams, inductive discharges with f(ni) > 0.8 can be maintained for 3000 s. The conclusion of this study is that the present heating mix of ITER is appropriate. It provides the necessary actuators to induce in a flexible way the best possible scenarios. The development risks of NBI at 1 MeV can be reduced by operation at 0.85 MeV. (literal)
Prodotto di
Autore CNR

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
data.CNR.it