http://www.cnr.it/ontology/cnr/individuo/prodotto/ID218832
Mega-modeling for big data analytics (Contributo in atti di convegno)
- Type
- Label
- Mega-modeling for big data analytics (Contributo in atti di convegno) (literal)
- Anno
- 2012-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/978-3-642-34002-4_1 (literal)
- Alternative label
Ceri S., Della Valle E., Pedreschi D., Trasarti R. (2012)
Mega-modeling for big data analytics
in Conceptual Modeling. 31st International Conference on Conceptual Modeling, Florence, Italy, 15-18 October 2012
(literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Ceri S., Della Valle E., Pedreschi D., Trasarti R. (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
- http://link.springer.com/chapter/10.1007/978-3-642-34002-4_1 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#titoloVolume
- ER 2012 - Conceptual Modeling. 31st International Conference on Conceptual Modeling (Florence, Italy, 15-18 October 2012). Proceedings (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#volumeInCollana
- Note
- Scopu (literal)
- PuMa (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- DEI, Politecnico di Milano, Milano, Italy;
DEI, Politecnico di Milano, Milano, Italy;
Dipartimento di Informatica, Università di Pisa, Pisa, Italy,
CNR-ISTI, Pisa, Italy; (literal)
- Titolo
- Mega-modeling for big data analytics (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#isbn
- 978-3-642-34002-4 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#curatoriVolume
- Atzeni Paolo, Cheung David, Ram Sudha (eds.) (literal)
- Abstract
- The availability of huge amounts of data (\"big data\") is changing our attitude towards science, which is moving from specialized to massive experi- ments and from very focused to very broad research questions. Models of all kinds, from analytic to numeric, from exact to stochastic, from simulative to predictive, from behavioral to ontological, from patterns to laws, enable mas- sive data analysis and mining, often in real time. Scientific discovery in most cases stems from complex pipelines of data analysis and data mining methods on top of \"big\" experimental data, confronted and contrasted with state-of-art knowledge. In this setting, we propose mega-modelling as a new holistic data and model management system for the acquisition, composition, integration, management, querying and mining of data and models, capable of mastering the co-evolution of data and models and of supporting the creation of what-if anal- yses, predictive analytics and scenario explorations. (literal)
- Editore
- Prodotto di
- Autore CNR
- Insieme di parole chiave
Incoming links:
- Prodotto
- Autore CNR di
- Editore di
- Insieme di parole chiave di