Empirical models based on machine learning techniques for determining approximated reliability expressions (Articolo in rivista)

Type
Label
  • Empirical models based on machine learning techniques for determining approximated reliability expressions (Articolo in rivista) (literal)
Anno
  • 2004-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1016/j.ress.2003.10.001 (literal)
Alternative label
  • C. M. Rocco, M. Muselli (2004)
    Empirical models based on machine learning techniques for determining approximated reliability expressions
    in Reliability engineering & systems safety; Elsevier Science Ltd., Oxford (Regno Unito)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • C. M. Rocco, M. Muselli (literal)
Pagina inizio
  • 301 (literal)
Pagina fine
  • 309 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 83 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 3 (literal)
Note
  • Scopu (literal)
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • C. M. Rocco: Facultad de Ingenieria, Universidad Central Venezuela, Caracas, Venezuela, M. Muselli CNR IEIIT Genova (literal)
Titolo
  • Empirical models based on machine learning techniques for determining approximated reliability expressions (literal)
Abstract
  • In this paper two machine learning algorithms, decision trees (DT) and Hamming clustering (HC), are compared in building approximate reliability expression (RE). The main idea is to employ a classification technique, trained on a restricted subset of data, to produce an estimate of the RE, which provides reasonably accurate values of the reliability. The experiments show that although both methods yield excellent predictions, the HC procedure achieves better results with respect to the DT algorithm. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it