Deterministic learning for maximum likelihood estimation through neural networkss (Articolo in rivista)

Type
Label
  • Deterministic learning for maximum likelihood estimation through neural networkss (Articolo in rivista) (literal)
Anno
  • 2008-01-01T00:00:00+01:00 (literal)
Alternative label
  • C. Cervellera, D. Macciò, M. Muselli (2008)
    Deterministic learning for maximum likelihood estimation through neural networkss
    in IEEE transactions on neural networks
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • C. Cervellera, D. Macciò, M. Muselli (literal)
Pagina inizio
  • 1456 (literal)
Pagina fine
  • 1467 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 19 (literal)
Rivista
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • C. Cervellera, D. Macciò: Istituto di Studi sui Sistemi Intelligenti per l'Automazione, Consiglio Nazionale delle Ricerche (literal)
Titolo
  • Deterministic learning for maximum likelihood estimation through neural networkss (literal)
Abstract
  • A new efficient technique for estimating probability densities from data through the application of the approximate global maximum likelihood (AGML) approach is proposed. It employs a composition of kernel functions to estimate the correct behavior of parameters involved in the expression of the unknown probability density. Convergence to the optimal solution is guaranteed by a deterministic learning framework when low discrepancy sequences are used to generate the centers of the kernels. Trials on mixture of Gaussians show that the proposed semi-local technique is able to efficiently approximate the maximum likelihood solution even in complex situations where implementations based on standard neural networks require an excessive computational cost. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it