http://www.cnr.it/ontology/cnr/individuo/prodotto/ID20578
Evaluating Switching Neural Networks for gene selection (Articolo in rivista)
- Type
- Label
- Evaluating Switching Neural Networks for gene selection (Articolo in rivista) (literal)
- Anno
- 2007-01-01T00:00:00+01:00 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- F. Ruffino, M. Costacurta, M. Muselli (literal)
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- Scopu (literal)
- ISI Web of Science (WOS) (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- F. Ruffino, M. Costacurta, M. Muselli: CNR-IEIIT, Italy (literal)
- Titolo
- Evaluating Switching Neural Networks for gene selection (literal)
- Abstract
- A new gene selection method for analyzing microarray experiments pertaining to two classes of tissues and for determining relevant genes characterizing differences between the two classes is proposed. The new technique is based on Switching Neural Networks (SNN), learning machines that assign a relevance value to each input variable, and adopts Recursive Feature Addition (RFA) for performing gene selection. The performances of SNN-RFA are evaluated by considering its application on two real and two artificial gene expression datasets generated according to a proper mathematical model that possesses biological and statistical plausibility. Comparisons with other two widely used gene selection methods are also shown. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi