http://www.cnr.it/ontology/cnr/individuo/prodotto/ID20511
Switching neural networks: A new connectionist model for classification (Articolo in rivista)
- Type
- Label
- Switching neural networks: A new connectionist model for classification (Articolo in rivista) (literal)
- Anno
- 2006-01-01T00:00:00+01:00 (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
- 10.1007/11731177_4 (literal)
- Alternative label
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
- Pagina inizio
- Pagina fine
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
- Rivista
- Note
- ISI Web of Science (WOS) (literal)
- Scopu (literal)
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
- M. Muselli: CNR-IEIIT, Genova, Italy (literal)
- Titolo
- Switching neural networks: A new connectionist model for classification (literal)
- Abstract
- A new connectionist model, called Switching Neural Network
(SNN), for the solution of classification problems is presented. SNN in-
cludes a first layer containing a particular kind of A/D converters, called
latticizers, that suitably transform input vectors into binary strings.
Then, the subsequent two layers of an SNN realize a positive Boolean
function that solve in a lattice domain the original classi¯cation problem.
Every function realized by an SNN can be written in terms of intelligi-
ble rules. Training can be performed by adopting a proper method for
positive Boolean function reconstruction, called Shadow Clustering (SC).
Simulation results obtained on the StatLog benchmark show the good
quality of the SNNs trained with SC. (literal)
- Prodotto di
- Autore CNR
Incoming links:
- Prodotto
- Autore CNR di
- Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi