Fluctuation-dissipation relation for chaotic non-Hamiltonian systems (Articolo in rivista)

Type
Label
  • Fluctuation-dissipation relation for chaotic non-Hamiltonian systems (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#doi
  • 10.1088/1742-5468/2012/04/L04002 (literal)
Alternative label
  • Matteo Colangeli (1); Lamberto Rondoni (1,2); Angelo Vulpiani (3,4) (2012)
    Fluctuation-dissipation relation for chaotic non-Hamiltonian systems
    in Journal of statistical mechanics
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Matteo Colangeli (1); Lamberto Rondoni (1,2); Angelo Vulpiani (3,4) (literal)
Pagina inizio
  • L04002 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://iopscience.iop.org/1742-5468/2012/04/L04002/ (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 2012 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • April (literal)
Note
  • ISI Web of Science (WOS) (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • 1 Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy 2 INFN, Sezione di Torino, Via P Giuria 1, 10125 Torino, Italy 3 Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 2, 00185 Roma, Italy 4 Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, 00185 Roma, Italy (literal)
Titolo
  • Fluctuation-dissipation relation for chaotic non-Hamiltonian systems (literal)
Abstract
  • In dissipative dynamical systems phase space volumes contract, on average. Therefore, the invariant measure on the attractor is singular with respect to the Lebesgue measure. As noted by Ruelle, a generic perturbation pushes the state out of the attractor, hence the statistical features of the perturbation and, in particular, of the relaxation cannot be understood solely in terms of the unperturbed dynamics on the attractor. This remark seems to seriously limit the applicability of the standard fluctuation-dissipation procedure in the statistical mechanics of nonequilibrium (dissipative) systems. In this letter we show that the singular character of the steady state does not constitute a serious limitation in the case of systems with many degrees of freedom. The reason is that one typically deals with projected dynamics, and these are associated with regular probability distributions in the corresponding lower dimensional spaces. (literal)
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it