Modeling fusion data in probabilistic metric spaces: Applications to the identification of confinement regimes and plasma disruptions (Articolo in rivista)

Type
Label
  • Modeling fusion data in probabilistic metric spaces: Applications to the identification of confinement regimes and plasma disruptions (Articolo in rivista) (literal)
Anno
  • 2012-01-01T00:00:00+01:00 (literal)
Alternative label
  • Geert Verdoolaege; Giorgos Karagounis; Andrea Murari; Jesús Vega; Guido Van Oost; JET-EFDA CONTRIBUTORS (2012)
    Modeling fusion data in probabilistic metric spaces: Applications to the identification of confinement regimes and plasma disruptions
    in Fusion science and technology; American Nuclear Society, La Grange Pk (Stati Uniti d'America)
    (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#autori
  • Geert Verdoolaege; Giorgos Karagounis; Andrea Murari; Jesús Vega; Guido Van Oost; JET-EFDA CONTRIBUTORS (literal)
Pagina inizio
  • 356 (literal)
Pagina fine
  • 365 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#url
  • http://epubs.ans.org/?a=14627 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroVolume
  • 62 (literal)
Rivista
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#pagineTotali
  • 10 (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#numeroFascicolo
  • 2 (literal)
Note
  • ISI Web of Science (WOS) (literal)
  • Scopu (literal)
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#affiliazioni
  • a Ghent University, Department of Applied Physics, Ghent, Belgium; b Associazione EURATOM-ENEA Sulla Fusione, Consorzio RFX, Padova, Italy; c Laboratorio Nacional de Fusion, Asociación EURATOM-CIEMAT, Madrid, Spain. (Verdoolaege G. a, Karagounis G. a, Murari A. b, Vega J. c, Van Oost G. a) (literal)
Titolo
  • Modeling fusion data in probabilistic metric spaces: Applications to the identification of confinement regimes and plasma disruptions (literal)
Abstract
  • Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. In this work, we present an integrated framework for (real-time) pattern recognition for fusion data. The main starting point is the inherent probabilistic nature of measurements of plasma quantities. Since pattern recognition is essentially based on geometric concepts such as the notion of distance, this necessitates a geometric formalism for probability distributions. To this end, we apply information geometry for calculating geodesic distances on probabilistic manifolds. This provides a natural and theoretically motivated similarity measure between data points for use in pattern recognition techniques. We apply this formalism to classification for the automated identification of plasma confinement regimes in an international database and the prediction of plasma disruptions at JET We show the distinct advantage in terms of classification performance that is obtained by considering the measurement uncertainty and its geometry. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. Finally, we discuss future applications such as the establishment of scaling laws. (literal)
Editore
Prodotto di
Autore CNR
Insieme di parole chiave

Incoming links:


Prodotto
Autore CNR di
Editore di
Http://www.cnr.it/ontology/cnr/pubblicazioni.owl#rivistaDi
Insieme di parole chiave di
data.CNR.it